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MAX I >I'M ENTROPY CALCULATIONS O.. A DISCRETIT PKOBAB11, ITY SPA;CE

P. F. Fougere

AFGL/LIS
Hanscom AFB, Bedford, MA

To Ed Jaynes, who started it 30 years ago and whose
clarity of exposition is an inspiration to us all.

I. The Maximum Entropy Princijie
In a remarkable series of papers beginning in 1957, E. T.

Jaynes (1957) began a revolution in inductive thinking with his
principle of maximum entropy. He defined probability as a degree of
plausibility, a much more general and useful definition than the
frequentist defiQition as the limit of the ratio of two frequencies in
some imaginary e.:periment. He then used Shannon's definition of
entropy and stattdJ thdt in any situation in which we have incomplete
information, the probability assignment which expresses all known
information and is maximally non-committal with respect to all unknown
information is that unique probability distribution with maximum
entropy (ME). It is also a combinatorial theorem that the unique ME
probability distribution is the one which can be realized in the
greatest number of ways. The ME principle also provides the fairest
description of our state of knowledge. When further information is
obtained, if that information is pertinent then a new ME calculation
can be performed with a consequent reduction in entropy and an
increase in our total information. It must be emphasized that the ME
solution is not necessarily the "correct" solution; it is simply the
best that can be done with whatever data are available. There is no
one "correct solution", but an infinity of possible solutions. Thesc
ideas will now be made quite concrete and expressed mathematically.

(a) Discrete Probability Space.
We have n propositions or statements S , 2 .S n, each

of which can be assigned a probability p., i = 1,n.1 The number p
runs from zero when our information tells us that S. is not true to
one when we assume that S. is true. In the case of Ia die, S. might be
the proposition that on the next throw of the die face i wili be up.
If the die has not yet been cast then our belief that face i will come
up next is described by assigning a number to p.. If the die were
perfectly symmetric and thrown in a fair way, making no attempt to
favor any face, then every face would be equally likely to occur and
then since one of them must occur, the probability of the statement
"some i will occur" is 1. Thus the probabilities would each be set
Lo I/n; iil Lhe case of a di.: (p. = 1/6, i=1,6). This is a simple
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expression of Laplace's "principle of insufficient reason " which has
been attacked by many but has never been replaced. ft is essentially
a symmetry principle. If the mechanism of selecting a number at
random from the possible set of n is symmetric with respect to all
members of the set then the probability of each is 1/n. There are
many practical realizations of this mechaiism of selection. All of
the resulting problems are isomorphic and all can be solved in
precisely the same way.

1. There are n dis-in,,i-h V,:t t!,,,wise identical objects
numbered 1, 2 .... n in an opaque container. An experiment consists
of selecting an object, noting its number and replacing the object in
the container.

2. A roulette wheel containing 36 numbered slots is spun and a small
ball is set in motion in the opposite direction. When both wheel and
ball slow down sufficiently the ball drops into one of the slots. The
number is recorded.

3. An ordinary 6 sided die is thrown. The number of spots facing up
is recorded.

4. A deck of 52 playing cards is shuffled face down. A card is
selected and its value noted.

Note that there may be bias introduced either accidently or
deliberately (to cheat) in any of these games. But also note that if
the bias (a favoring of any outcome over the others) becomes large
enough, the players of the game will almost certainly notice, with
retribution to the perpetrator soon to follow. Cheats at poker, craips
(dice) and roulette have often met an untimely end!

We will soon see that the ME method is admirably suited to detecting
such biases, even very tiny ones. Every time a correctly calcu11-pa
ME probability distribution fai1 to reproduce an observed frequency
distribution accurately enough, the conclusion can be drawn that a
bias which has not yet been taken into account is operating. In just
this way was quantum mechanics discovered!

The principle of insufficient reason will be derived as the maximum
entropy assignment: given only an enumeration of the possibilitic:s
and normalization:

E Pi = 1,(1)
and nothing else.

Throughout this article, sums on i will always run from 1 to n, and
for simplicity of notation the limits will not be typed. The ME
probability distribution given only the above information is (p. =

I/n, i=1, 2 ... n). This statement will be proved in Sectien b. This
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expresses exactly the known information and nothing more. Any
subsequent information which is provided, for example: "the die is
not symmetric", will lower the entropy and change the probabilities
accordingly.

(b) Entropy.
In his wonderful little book on information theory Shannon

(1948) first set forth the axioms or elementary desiderata of
consistency as follows: if S is the measure of information or
uncertainty and pi = probability of the i'th outcome:

1. S = S(Plp 2  ... pn)

The information depends upon the entire set of probabilites.

2. If all p. are equal then S is a monotone increasing function of n.
With more possibilities to chcose from thc informati;Gn in a choice is
greater.

3. S is additive for compound independent events. [f events A and B
are independent, S (AB) = S(A) + S(B). The information contained in
Lhe statement "it is raining and today is Tuesday" is exactly equal
to the information contained in the statement "it is raining" plus the
information contained in the statment "today is Tuesday".

4. S does not depend upon how the problem is setup. See Figure 1.

Figure 1. Two sets of probability assignments. In la there are three
events A, B, C with probabilities 1/2, 1/6, 1/3 respectively. In lb
the final state A, B, C is reached via an intermediate state D with
probability 1/2. The information in both diagrams at stage A, B, C
must be the same.

The information in the probability assignment A = 1/2, B = 1/6, C =i

1/3 in Figure la must be the same as that in Figure lb where we have
used the intermediate point D.

A-
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Shannon then proved [see also Tribus (1961, 1969)] that this measure

of information has the form:

H = - K Pi log Pi (2)

and furthermore that this functional form is unique: it is the only

form capable of satisfying the four axioms. The constant K is merely

a scale factor and the base of the logarithm is arbitrary; for

convenience the constant K is set to 1 an! the base of the logarithm
is taken to be natural. Thus we have:

H = - pilnPi (3)

Since the p. are all in [0,1], 11 '> 0, if we agree that OlnO = 0, (a
proposition which has zero probability conveys no information). As an

elementary exercise let us prove that the probability assignment with

maximum entropy is one with p. = 1/n.

We have E Pi = 1, H = - PiIn pi (4)

Form the expression Q = - pi in pi + X (E pi - 1)

Where A is a Lagrange multiplier used to enforce nurnalization.

Now ditterentiate with respect to PI:
a Q a 0 (In p1 + 1) + X =0api

thus In p1 = X -1

then pi = exp (X-l) (5)

But this is independent of j. Thus all p. are equal and by

normalization they sum to 1; therefore pJ= I/n, j=1,n. Thus with
only an enumeration of the possibilities which are exhaustive (one

must occur) and exclusive (only one can occur) and normalization, the
probability assignment which maximizes the entropy brings us back to

Laplace's principle of insufficient reason. Any further information
would change the probabilities and lower the entropy. We do not need
Laplace's principle of insufficient reason; entropy maximization
subject only to normalization produces Laplace's principle as a

theorem or result.
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(c) Maximum Entropy Formalism.
Since we will be maximizing entropy uader a variety of

constraints, it is helpful to have "cookbook ecipe" or a "crank to
turn".

In addition to normalization (Eq. 1) we may have M constraints in the
form of expectation values or averages in the form:

E Pifm (xi) = <fm> =  Fm, m = 1,2... M (6)
We use the calculus of variations now and take variations of our
important equations 4 and 6 to get:

6H = - (1+ In pi)6pi = 0

(X0 - 1) cpi = 0

Xm Y fm (i) 6 Pi = 0 (7)
m i

A'I ... X M are, of course, Lagrange multipliers. Now add the
threeequations and factor 5pi

[ + pi + X 0 - 1 + m fm (Xi)] 6Pi = 0 (8)

For any arbitrary variation, 5pi, the expression in brackets must
vanish for every value of i. Solving for In pi we get

InP1  = - f- mfm(xi)
Thus

pi = exp[- X0 - f Xmf (xi)] (9)
m

Now for normalization we have that

Pi =  1= exp [- X0 - fm lxi)  110)
Solving for exp ( which we call the partition function 7:

Z = exp(X 0 ) = Eexp - Xm fm (xi)] (11)

Taking logs of both sides

X0 = in exp X - m fm (xi)  (12)
iM m
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Thus X is tie log ot the partition function Z; for reasons which
will become dJear immediately we call A the potential function.0

Now differentiate A with respect to r

0 o _Ar (x,) exp m Xm fm (xi)] (13)

axr Lexp [-~Xfmx)

Multiply numerator and denominator by exp (-XA

Then

aX 0  - fr (xi)exp[- 0 -Em Xm fr(X,)1 (14)

CXr exp [- X0  - f

Now notice from Eq. 9 that the exponential of the bracketed term in

numerator and denominator is just the probability p.. Thus

a X0 - f r (xi) Pi

er (Pi
We now see that A is called the potential function because the
constraints are given as derivatives of A with respect to alL the

other X's. 0

For convenience we now summarize the important formulas:

Z = E exp [ - x m  (xi) 1jm m.(X)

= Z < fm > (16)
Pxm m

pi = exp [- XgM fn (xi) ] /Z
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We have exactly one Lagrange Multiplier Xi for each constraint and we
determine the set of X's by solving the MXM set of equations

aXm In Z (X, X2 . ........ , XM) = _ Fm (17)

Finally the probabilities are given by:

Pi = 1/Z exp [- X1 fI(Xi) - X 2 (x) ...- XM fM (xj) ] (18)

We can seee immediately that pPi = Z/Z= and thus the formalism
automatically produces a normalized set of p.

[I. Wolf's Dice Data
To make the foregoin5 ideas as concrete as possible we

will now examine in detail a remarkable series of experiments
performed about 100 years ago by the Swi¢q scientist Rudolf Wolf who
is known well fcr his work on sunspots. One of the experiments,
reported by Czuber(1908), consisted of throwing a pair of dice, one
red, the "ROTER WURFEL" ard the other white, the "WEISSER WUIRFEL", a
total of 20,000 times. The dice were thrown carefully in such a way
as to avoid as much as possible introducing any bias, any artificial
favoring of any of the 6 sides. Evidently (as we shall see) the dice
were made using ordinary care but not extraordinary care - they were in
fact quite noticeably biased.

EU Ja, -. .C - itcn oxt.:.. i~cl ;. ~ in >genral :2 on Wolf's
dice data in particular in no loss than four publications (19 63a,
1978, 19/9, 1982). 1 would urge the reader to look up and read this
exciting scientific saga. I freely acknowledge my deep indebtedness
to Ed Jaynes for my inspiration in writing this paper but of course
any mistakes which I may have made in interpretation, emphasis,
algebra or arith,, Lc arc mine alone.

Table I lists the totals obtained by Wolf for the 36 distinct
possibilities - that is: white 1 red 1; white I red 2; . .. up Lo
white 6 red 6.
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Table I Wolf's Dice Data:

Weisser WUrfel RM R8
3 4 0NR. 1 2 3 4 5

1 547 587 500 462 621 )J 34,)7 ,. 17()1
2 609 655 497 535 651 684 3631 0.18155
3 514 540 468 438 587 6214 3176 0.1588')
4 462 507 414 413 509 611 2016 0.1 581
5 551 562 499 506 658 672 1448 t).1724 ,

6 563 598 519 487 609 646 '14? 2? . 1711
WM 3246 3449 2897 2841 3635 31)32 20,000
WF = .1b230 .17245 .14485 .14205 .18175 .10660 1.0

RM and WM are the red and white marginals, respectively.
RF and WF are the red and white relative frequencies, respectively.

Since there is no evidence for and no reason to expect that the t ;n
dice were correlated, the results for the white die are independent
those for the red die, and TablP I also lists the white marginn, 'he
total number of times that the white die came up a given number 4f
spots indenendent of which red spot was showing. Similarv the red
marginals are listed. It can be seen at once that the dice were
indeed biased; for example W6 appeared 3932 times, almost 00)0 ti es
more than expected if the die were fair; W4 appears only 2841 t e
492 times less than expected. The relative frequencies gi,' In
I are just the marginals divided by 20,000.

a. The White Die
Let u- now, following Ed Jaynes, try to account for

of the discrepancies or biases using ME. At this point, it is
important to know what a conventional playing "die" is. It is a solii
cubical object, made of a machineable substance such as ivory.
Hemispherical depressions or excavations (spors) are ,a.le
symmetrically in each face, with the number of spots on opposite fae<
totaling 7. The spots are painted in a contrasting color. Thus 1 is
opposite 6, 2 opposite 5 and 3 opposite 4. If face 6 is "up" nd face
2 is visible, then face 4 is to the right of face 2. The reader's
intuition will be aided by actually examining a real die.

1. One constraint. The most obvious physical asymmetry is now
apparent. Whereas six spots are removed from face 6 only one is
removed from face I and thus the center of gravity of the die is
shifted very slightly toward the I face. Similarly the 2 and 3 faces
are slightly heavier than their opposites 5 and 4 respectively.
Quantitatively, the center of gravity will be shifted toward the "3"
face by small distance E corresponding to a one-spot discrepancy.
Similarly the center of gravity will be shifted toward the "2" face h
3 E and towards, the "1" face by 5 E . Thus the spot frequencies should
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-,j i rted propor t iiona I!y ( f reqnency shift = a Limes cont er o frivitv
hi ft = , )= Then the spot frequoncies should vrv Ii niirl v with i:

gi = 1/6 + ac f11 (i) (19)

Rhere fI (i) = i-3.5.

Thu s the expected number of spot.s wou Id he shifted to (a I Iol I h so

on i will now run from I to 6.)

<i>= E igi = 3.5 + 17.5 x (20)

or the function f (i) has a non-zero expectation:

< t1 > = 17.5 u( (21)

We note by cal cilat ing i rom Table I that the ve rage u..iMbh r of s pots

showing on the white die was 3.5981. This was !arger than 3.- as

expected on the physical grounds just discussed and not -11u11 1.) -1-s

would have been expected from a fair die. .et is use this ono piece

of information as a constraint and (ind the six p. 's which viel':I

maximum entropy. The complete statement )f the prohlem it thi a t ace

is: We are p iven 1: an enumeration of the p)asihi lit ies, amIl v i =

1,2,3,4,5,6 and 2 : =i-  A and nothing else. It is thus si-mpler to

use h (xi) = i as constraint function, rather than f (xl = i -3.3,

because we are given the average value of h - '. The eqiat i in

become Z = Eexp Xh (xj); h (xi) = i;

.Pi h(x i) = -, Pi = A (22)

Let y exp ( A
Z E E(exp~x )

yi = y + y2 + y 3 + y 4 + y 5 + y 6  (23)

in Z - yIZ[1 + 2y + 3y2 + 4y3 + 5y4 + 6y5 ] = A

a x (24)
Expanding and simplifying we get:

(1 - A) + (2 -A)y + (3 - A)y2 + (4-A)y3

+ (5 - A)y4 + (6 -A)y 5  = O (25)

This 5'th degree equation has one real root; Table IT gives the value

of the real root y versus the average A. Here we have used the MSLI,

subrout ine "Z"OLY".



lab 1. 1, . Root of EIq. 20 (y) versus ave rage va lao (A).

N v v A V

1 .1 000000 2.0 .53282) 3.') .8*39709 4 t [.10 1)4 5.) I .7)80)
I•! .0u0112 2.1 .565943 3.1 .870434 4.1 t.235307 5. 2. ()()74)
1. .1t675n 2 .2 .597991 3.2 .901644 2• 1 5.282,o 5 . ) 64 1,6415

3 . 51 V, 2 .3 .0)215 3.3 .33')40 4.3 1 . 333821 5 . 2 3O06()
1.4 .2 743i 2.4 .659827 3.4 .966271 4.4 1 .3803) 5 .4 2 .1 6o

1'17 .- ) 2 .5 .690010 3.5 1 .000000 4.5 1.441254 5.5 2 052
1 .i. 2240 2.() .71927 '3.6 1.034906 4.6 t.515541 5.) 3 47001

1 .7 .4235&4 2 7 749726 3.7 1.071191 4.7 1. 5802 5.7 4 '231i-
1i !402) 2 .6 .77)4 3.8 1. 109085 4.8 1.672267 5.8 100f7,7
1.0 .4 1 ",,)1 ] 2.) .. o)Slo 3.0 1.148853 4.0 1.7 c)60 4 5.r) 1.000661

Kr ,o1f's whito iie, we had = = 3.5083 giving 1.0"H43'.2,
!'= ,.,7 0 . l'he M: prl)-:1.i Ilit es are p. Y ' a id ire given ] l i,

11I . ko If's diCO data with onO coontreiint (wh ito 1i

0.16230 0.15204 ).0094 11.4,)
2 0.17245 0.15818 0.0143 25.75

14485 . 16361 -0.0188 43.02
4 0.14205 0.16922 - 0.0272 817.25
5 0.18175 0.17502 1).00%7 5.1
1) . 19660 0.18103 I.0 t 26.7,

ire the relativo frequencies (W]F) from Table 1.

n are the M1E probahilities based on the const raint: = 'ii =

3. 50si3.

C = 2 , N(g.-p. )/p. = Partial contribution to Chi-. Yhe :it i-1 1

valuie: 'hi- ().65) = 9.49 on 4 degrees of 1reedon. The con '

degrees of freedom will he discussed later.

(';xanining Table T11 carefully we see that the deviations, \ =
between observed relative frequencies, 0., and MI proab lit,, ,

are negative for faces 3 and 4 and positive for face, 1, 2, , 0 iid
the C. tell us that these deviations are highly significant. This
does not mean that ME has failed hut tnat there is a further phi i

constraint. At this point in JIaynes' paper he again demonstrates hi-
genius as a practical working physicist, who as Enrico Fermi did,
delights in going into the machine shop to make things work. lavnes
explains to us just how to turn a lump of ivory into as perfect a (u!e
as possible. A milling machine used by an expert would have no
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i uhie in rutting ' sidies of the die all a(-ccurately plane with -ill
oigles accu-iraitely 90') and the top face accurately square. But then
* he iie woul d have to he removed from the machine and turned upside
lawn to finis;h to final face. It would he extremnely difficult to

a just1 the work t;ehie height so that the final dimension is exact lv
equtal to the other two: The result of the difficulty would he a lie
which is either: ( i) slightly "oblate" with onc dimension shorter
than thie other two or (ii) slightly prolate with one dimension
:l ightly greater than t-he other two. Of course either typt- of
iperfect inn would const itute a "~constraint" and would change the

re iati ye frequencies,.

2. Two Constraints-. W0e can now see, quite clea3rly, that the white
(lie- inst- have heen prolate with the 3 - 4 dimen S 4 on heing sl,,ightly
greater tnan the I - 6 and 2 - 5 dimensions! Fee Figure 2 for an
exaggmerated sketch of i prolate die. Such a die is more I ikel v to
faill "flat" wit-h a 1, '2, 5 or 6 showing and thus frequencies of 3 an"
Sspots would be lower thani the frequencies of 1 , 2 , 5 or 6 Spots.

Viiore 2. A prolate die with the 3-4 (top - hottom) diioensi en fi
slih 1y1arge r than the other two equal1 dimensions A (1-6 a~-)

houppose that the 'I - 4 dimension were greater than the ot her two by anl
i11nlilnt .This woul d increase the frequencies g 1  51 g1 6 bY,
proportional isiount : and dlecrease !-he, frequnc i es 3 and . hv in
a!monnt 2 R L (this preserves normalization).

Thus we nlow define a new constraint. function:

f 2 (') = 1'1, - 2,-2, 1, 1, (26)

mIld WO find < f2 9it 2 (') = 91+ 92 2(93 + 9

+ 9  + 96= 0.1393 (27)

from Wolf's data on the white die given in Tabhle I. %O will have two
Lagranige mul tipl iers and the partition function Z7 will 0ow he:

Z (xiX 2)= eX2.xxI[ f 11 i X2 tf2 () (28)



1] 1. 1 1 )tL I, k I:

where f1 (i) = i -3.5 from Eq. 19 and f2 (i) is given in Eq. 26.

letting x = exp (-1 l); y = exp 2)

Then Z(,\ 2  = x - y (1 + x + x-3 + x + x +x 5

We now have two constraint equations:

Z F1  AaZ -0, ZF 2 -y Y =0 (29)

These yield two coupled equations in x and y:

(2F1 +5) + (2F1 +3) x + (2F1 +l) x2Y3 +

(2F1-1) x
3 3 + (2F1-3) x

4 + (2F1-5) x
5 = 0 (30)

4 5 2 3 -3
and (F2-1) (1+x+x +x ) + (F2+2) (x +x3 ) y = 0

The IMSL library now comes to our aid with a very nice subroutine
ZSPOW, which solves n simultaneous non-linear equations in n unknowns.
For x and y we get 1.03223 and 1.07442 and the resql~ing ME
probabilities are given in Table IV.Z = 6.08530 x y.

Table IV Wolf's dice data with two constraints (white die)

i gi Pi .i = gi-pi C.

1 0.16230 0.16433 -0.00203 0.50
2 0.17245 0.16963 0.00282 0.04
3 0.14485 0.14117 0.00368 1.91
4 0.14205 0.14573 -0.00368 1.85
5 0.18175 0.18656 -0.00481 2.48
6 0.19660 O. 1258 0.00402 1.68

9.37

See the footnote for Table ill. Chi 2  (0.05) on 3 degrees of freedom
is 7.81. c

Table IV agrees with Ed Jaynes' results xcept that he used 5 degrees
of freedom and the critical value of Chi at the 5% level is 11.)7.
He thus concluded that "there is now no statistically significant
evidence for any further imperfection. .. .". In a later paper Jaynes
(1979) discusses the number of degrees of freedom he should have been
using and concludes unequivocally that the correct formulation is:
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df = n - 1 - m

where dif = number of degrees of freedom in Chi , n number of
possibilities ( 6 for a die) and m = number of constraints. We
subtract one more for normalization. Simply put, the number of
degrees of freedom is the number of independent values of the
probability which can be assigned. In the cise of two constraints
plus normalization (essentially three constraints) we could assign
only three probabilities lying on the range 0 to I and then the otherthree would he uniquely determined.

Thus we see that for the white die there is still a statistically
significant (at the 957i level) imperfection not explained by misplaced
center of mass or oblateness. Jaynes 1979 says now that: "To assume
a further very tiny imperfection i(the 2-3-6) corner chipped off] we
could make even this diLscrepancy disappear; but in view of the (great)
number of trials one will probably not consider the result as
sufficiently strong evidence for this." The word "great" probably was
intended to be "small".

Let us disagree midly with .Jaynes at this point and actually look for
this tiny third imperfection.

3. Three Constraints. Figure 3 gives a sketch of a die with the
imperfection suggested by Jaynes.

* p

Figure 3. A die with a small chip broken off the 2, 3, b cornier.
Such an imperfection would tend to increase the probabilit' (;f th,',,
landing with the 2, 3, or 6 face showing "up".

By shifting its center of gravity, such a die would slightly fiv,'c the
2, 3 and 6 faces. Let us express this constraint as:

f 3 (i , - , - , 1(31)
Table V summarizes all three constraints we are now considering and
attempts to simplify the algebra.

Let w = exp (-A 3 )
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Table V Summary of the three constraints
Factor out

f fMi f 2(i) f 3 () Contrihution to Z x -25Y w -

1 -2.5 1 -1 x 25 -1 1

2 -1.5 1 1 x 15y w x w2

3 -0.5 -2 1 x, -05y-2w2 y -3 w 2

4 0.5 -2 -1 x05Y-2 w-1 x3 y-3

5 1.5 1 -1 x 1 5 y w 1  4

6 2.5 1 1 x2.5 v wx5 w 2

Since the algebra gets a little tedious and mistakes are likely, the
use of such a table is recommended in general. N~s a footnote,
programs capable of simple algebra and differential calculus exist
n1ow. Use of such programs would be really beneficial. The three
non-linea:- coupled equations for the constraints are now:

(2F 1+5) + (2F 1+3) x w 2+ (2F 1+1) x 2Y- w 2+

3 -3 4 5 2 (2
(2F I-1)X y + (2F F 3)x + (2F F-5)X w = 0. (2
(F 2-1) (l+xw 2 + x 4+ x 5w 2) + (F 2+2) x 2Y- (w 2 x) = 0.

(F 3+l) (14-xYj +x )+ (F 3-1) w x (1+xy- + x ) =0.

With values: F 1  0.0983; F 2 0.1l393; F = 0.0278 the three coupled
equations can be solvgd to-five x =l.03042; y = 1.07425; w = 1.02159
and X 6.196106 x *y w . Thus we get Table VI summarizing the
resulting maximum entropy probabilities.

Table VI. Wolf's dice data with three constraints (white die)

i g. Pi A\. = g.-p. C.i

1 .16230 .16,139 .00091 0.10
2 .17245 .17361 -.00116 0.16
3 .14485 .14434 .00051 0.04
4 .14205 .14256 -.00051 0.04
5 .18175 .18215 -.00040 0.02
6 .19660 .19594 .00066 0.04

0.39

See footnote to Table 1T. Chi C2on 2 degrees of freedom is 5.99.
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The agreement between the observed frequencies gi and the maximum
entropy probabilities p. is now essentially perfect. In fact it is
too good! The agreement is much better than would be expected if
Wolf's experiments had been repeated many times. The observed
frequencies in many sets of experiments, each 20,000 tosses long,
would differ from each other by much more than the gi-p, from Table
VI. Jaynes (1978) calculates that the fj7htuations in the observed
frequencies ought to be of order (g./N) . For g. = 1/6 , Agi

0.003. All of the deviations g.-p in Table VI are smaller than this
and all but g2 -p, are about an order of magnitude smaller.
Nevertheless, looking at Fable IV again, with only two constraints,
four of the deviations are larger than 0.003. In summary the observed
frequencies for the white die can be completely explained by three
physical constraints:

The largest is No 2, the oblateness,
The next largest is No 1, the center of gravity shift
by spot removal and:
The smallest is a tiny chip off the 2 - 3 - 6 corner.

The first two are required - the evidence for them is overwhelming.
The evidence for the third is much weaker. From Table IV again, for
two constraints, Chi = 9.37 which is just significant at the Q5%level but not significant at tie 97.5% level.

Further thoughts on the white die. The computer program which solves
the three constraint problem has been generalized (quite simply) to
solve all of the imbedded problems:

No constraints

any one of the three acting by itself
any two acting together
all three.

The first case is trivial and reduces to p.= 1/6. The last case has
just been described. We summarize the results of all cases in Table
VII.

Table VII. Chi squared for the white die. I = constraint on; 0 =

off.

Constraints
No. I No. 2 No. 3 df Chi Square

I 1 1 2 0.39
1 1 0 3 9.37
0 1 1 3 56.28
0 1 0 4 72.01
1 0 1 3 189.77
1 0 0 4 199.42

0 0 1 4 253.85
0 0 0 5 270.96
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In sipmmary the most important single constraint is No. 2 (oblateness)
the next important single is No. I center of gravity shift and the
least important single is No. 3, corner chip. The best 2 constraint,
are I and 2 acting together followed by 2 and 3 and then I and 3. As
a finail footnote it is not sufficient to set one of the P's and itsA
equal to zero and then solve the three equations. The equation for
the inactive constraint must be dropped altogether and the
corresponding Aset to zero. This has been done in the program.

b. The Red Die
To the best of my knowledge no one has ever attempted a

comple te ir iv-is of the red die but with a simple program in place it
hecomes I trivial risk to see if the same kind of thinking works just
as well in this -se. It had better! But we must be quite careful
because ;ilthough we expect similar kinds of asymmetries they need not
be identical

I. One Contriint. The first constraint as in the case of the whit,,
die, simply requires the average spot number. For the red die this
value is: <ii> = 3.49165 which is less than 3.5. Even though this s
less than 3.5 and not greater than 3.5 as expected we run the ME
calculation with the one constraint:

<i-3.5> = -0.01835.

We get x = 0.993728 and Z= 5.86966. The ME probabilities are given in
Table VITT.

Table VIII. Wolf's dice data with one constraint (red die)

i gi Pi i. = gi-pi C.

1 .17035 .16930 .00105 .13
2 .18155 .16824 .01331 21.07
3 .15880 .16718 -.00838 8.41

4 .14580 .16613 -.02033 49.77
5 .17240 .16509 .00731 6.47
6 .17110 .16406 .00704 6.05

61.90

See footnotes to Table [Il.

Looking at A. g.-p. from Table VIII we see at once that A 3 and A ,,
are negative while the others are all positive. This is precisely the
same situation we found in Table Ill for the white (lie. The red die
is also prolate in exactly the same way as the white die! This
situation is not really as bizarre as might first be thought. Given
that the die maker was prone to err on the prolate side, the only roal
coincidence is in the numbering of the faces. If he started his
numbering (carving of spots) at the one spot he woild be twice as
likely to start with one of the four faces which are a short distanve,
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;apart as on either of the two "long" faces. Having done so, the two
spots would be on short facc just as often as on a long face. Don't
forget that once a one spot has been carved, the six must be on the
opposite face. Thus the appearance of identical asymmetries on the

two dice is not very surprising at all.

2. Two Constraints. We may now use the same program again to

incorporate the first two constraints with values F = (f I =
-0.01835; F2  2<Q = 0.0862. We get x = 0.993965; y = 1.04508;
Z = 5.66614 x y and Table IX gives the resulting probabilities.

Table IX Wolf's die data with two constraints (red die)

i gi Pi Ai = gi-pi C.

1 .17035 .17649 -.00614 4.27
2 .18155 .17542 .00613 4.28

3 .15880 .15276 .00604 4.77

4 .14580 .15184 -.00604 4.80

5 .17240 .17227 .00013 0.00

6 .17110 .17123 -.00013 0.00
18.13

See footnotes to Table LII.

3. Three Constraints. We see here a tremendous improvement with an
added bonus. Now that we have removed, by ME, the effects of the

first two constraints, a third, smaller, but significant, constraint
is now very obvious. Sides 5 and 6 have been fit very well indeed and
the other four discrepancies are all of the same magnitude but with
two plus signs and two minus signs. A possible physical explanation
will be discussed later but the constraint to use now instead of the

third constraint we used for the white die is:

3 (i)=- 1, 1, 1,-1, 0, 0 (33)
we now modify the master program slightly to accomodate this new

constraint. Once again we can solve all of the ini~edded problems.
Table X shows the results.
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Table X. ('hi -iuared for the red die. I constraint on: off.

Constraint Devrees of
1 2 3 tfreedom Chi S quare

I l I 0 0
0D 1 1 3 2.401
1 1 0 3 18.13
0) 1 0 4 '20.44
1 3 1 3 74.86

14 77.16)

1 0 491.0

Summajr 17 g our- resulIts for the redI die we have s;een, thlt:

Fhe red ldie wats no moare fair than the white lie.

The "K( Ii on) of spotsa andl the suhsequent shift of t he centei at

:'riv ir 4v ws not an1 important constr tint for th C s die as it wars fr thle
wh tel ie . Other (unknown) c ampensa 'tar Y const r i loti- must. hijve h)een it

The ed lewasoblte in esoen Liav the;sme way that theil e di,,

Is For hoth dice this wais the most important constraint.

There was, no evidence of a corner chip hrre as. there was fo)r thle whifV

lie hut a constraiint of the mathematical form -1 , 1, 1 , -1, 0D, () was
a) e rr i mno. No simple physical explanation seems i-. order hat perhoosp-
Lwo simnple constriints were acting in concert. A small we-ic SpIA 0)

the 2' - 3 edge and a smtall excess of mnaterial on the 1 - 4 --Ago wouil
make, 2 aind 3 more ti kely and I and 4 less likely.

Af ter r emino v ing t he qo s t i m) ortLa nt conTs t r a int ( ohb3t e ne s s) t he -i
as qxpressiodo hy Ch i = 20.44 is qui te si gni ficant . Cr it ical vi ue
C'hi - on 4 (1f i s .5 at 5' level.

2
When constraints numher 2 and 3 are used together ('hi drops wadowai
to 2.4(D and the agreement between the observedl frequencies o_ sad t he
MEk pruobilities p. i is too good! Repetitions of the 20,000 toss '
experimnent would very likely prodluce departures larver than the
ohtaiinedI from these two constraints.

The final conclusion from our exhaustive analysis of the two dice is

that the maximum entropy principle allows us to discover physicail
imperfections in a pair of dlice from data over 100 years old. '\tI
least as far as real dice are concerned, the principle of MI: works ind
works brilliantly!
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Ill. Published Criticisms

There have been many published papers which criticize the
maximum entropy principle in general and Jayne's treatment of dice
experiments in particular. Most of these attacks have been answered
in the literature, some of rhem many times.

a. Older Criticism
For some of the earlier criticism see for cxampi, Lhe

paper by Rowlinson (1970) and Jaynes's (1978) answer. For a
particularly virulent set of attacks see Friedman and Shimony (1971)
and for defenses see Jaytie. (1973) p 53, Tribus and Motroni (1972)
Gage and Hestenes (1973) and Hobson (1972). See also Friedman (1973)
and Shimony (1973) for their replies.

b. Frieden's Paper
I-- latest advcnture in "anti-maximum-entropism" comes

from B. Roy Frieden (1985) who professes to be "quite happy with (his)
empirical results" using the maximum entropy formalism. The careful
reader of Frieden's "Dice, Entropy and Likelihond" hereinafter
referred to as DEL, might take pause at some of the statements to be
quoted now.

Statement 1:

"For example, this author originally believed ME to
provide a maximum probable answer. However, at least for
photon images, this is usually wrong ........ Or, if it
were required to estimate the most probable roll
occurrences for an unknown die, the die would have to be
known A priori to he fair, a rather restrictive
assumption."

Wolf's dice were not fair. A priori, there is no requirement for
fairness.

Statement 2:

"Usually an engineer wants to know how probable his answer
is, not how degenerate it is. The two concepts differ in
general, and only coincide when every outcome has the
same probability (i.e. when the die is fair."

The maximum-entropy die is fair only if there are no constraints
acting besides normalization.

Statement 3:

"The aim of this paper is to show that the die experiment
just spoken of has solutions by classical, Bayesian
estimation; that the probability of these solutions may
be computed, as with any Bayesian problem; that
therefore, there is no need to introduce a new
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concept such as maximum entropy in this most basic of

problems; and that maximum entropy is not coincident with

these solutions. In fact maximum entropy not only gives

the wrong answer, it gives an answer that is very far

from right."

Note the glee in the last sentence. Note also that the entire purpose
of ME is to determine a prior probability assignment. This prior can
then be used in any subsequent Bayesian analysis.

Statement 4:

We snall solve this problem in a purely classical way,
without the need for recourse to any exotic estimator,
such as ME."

Note the pejorative word "exotic".

Statement 5:

"As we shall see, the most valid objection to the use of
[Frieden's Eq.] (7) is that, although it describes
'maximum ignorance,' it does not describe the user's
state for a die in particular. The wrong experiment is
being performed to model maximum ignorance".

Frieden changes Jaynes' die problem brutally and then complains that
his new problem is not the right problem.

Statement 6:

"What this means is that we are not in a state of maximum
ignorance when given an unknown die. We know what to
expect a priori of its biases. For the particular case
of a die, a real one, it would be wrong to assume maximum
ignorance present. Hence, rolling a die is the wrong
experiment to use when attempting to model 'maximum
ignorance' situations. No wonder the result [Frieden's
Eq.] (17) goes against intuition."

Once again, Frieden, having changed the problem, complains that this
new problem is the wrong problem.

Statement 7:

"We suggest that in the past readers have been seduced
into a belief in ME principally because of this confusion
between what constitutes maximum ignorance on one hand,
and what constitutes the state of ignorance in a real die
experiment on the other. If you want maximum ignorance
do not consider a die experiment!"
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Did you catch the truly pejorative word "seducad"?

Note in Statement 3, the use of the word "new" in connection with ME,
aiLd in Statement 4 the even more revealing word "exotic" which also
appears again later. Note also the word "seduced" in Statement 7. A
psychologist examining this paper might conclude that something other
than pure scientific discourse is going on here. There is a pervasive
feeling here that the author thinks he has found a fundamental flaw in
the use of the ME principle and he is downright gleeful about it!
Just reread Statement 3.

At this point we will examine the substance of the Frieden paper DEL.

Recall that in Jaynes' formulation of the problem, we are given:

An enumeration of the possibilities,

The average value of some linear constraint (e.g. the
average spot values) measured in some previous experiment

Normalization

And nothing more.

In DEL, Frieden now changes the problem from that of a six sided real
die to that of a three-sided imaginary die formed by combining rolls
of one and six to yield one; two and five to yield two and three and
four to yield three. He then calls the unknowns "biases" and labels
them x., x1 , x3 , Then the real heart of the paper is introduced with
Statement 5.

Statement 8:

"By 'nothing' the user usually means that a priori every
possible set of numbers xlx 2 ,x, (obeying normalization
equation (1)) may be present wi h equal probability or
frequency. Such a flat or uniform law is widely used in
estimation problems. for example: when x,,x2 ,x 3 are the
spatial coordinates of a material object w ose location
in a finite box is completely unknown a priori. Or, when
a uniformly glowing planar image emits photons from
unknown positions (x,y) = x1,x . Or, when a distant
aircraft of unknown coordinates (x,y) is being tracked;
etc. This is also MacQueen and Marschak's (1975)
definition of maximum ignorance, and we shall use it as
well."

Here we go off the deep end! Frieden has changed an essentially
discrete problem into an essentially continuous problem!
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Recall the discussion in section Ia to the effect that Jaynes' die

problem is isomorphic to any number of essentially discrete games, e4

roulette, drawing a ball from a bag, drawing a card from a pack, etr.

The essential features of these games are two in number: they are

discrete and there is a symmetry principle operating. While small
biases may be present in any of these games, large biases would be

self defeating; they would be too easily detected. What the "user
usually means" is, not only mathematically so vague as to he useless
hut also is completely irrelevent! Frieden can set up and attempt to

solve any problem be choses. What he must not do is call his prohler.
"Jaynes' problem"!

Fhis Statement 8 changes laynes' problem by adding an enormous amoun-
of information nowhere present in Jaynes' statement of the problei
quoted above, let us ask the questtoh "how many hits would be
required to encode the possible answers to Jaynes' problem"? rlearlv
for the three sided die, not even two bits would be necessary to
encode the possible outcomes "1", "2" or "'3". But if we are to take
Statement 8 seriously we need another layer of information to discover
which one of the infinite number of possible lice we are, in fact,
shooting. Frieden, later in the paper, tries to simulate his
continuous problem on a computer as follows:

Statement 9:

"In other words, the prediction is that only roll outcomes
2 occurred! Actually this result can be explained in
hindsight. Suppose we try to simulate the situation by
repeatedly selecting sets of biases for a die, rolling
the die, and only counting those biases which give rise
to the required n. I1 this way, p(xi,x, x) is built

up as a histogram, event by event. Let the biases be
selected on a fine grid so that "every" triplet x , x,
x3. s sampled only once. This accomplishes the ftat
prior probability law [Frieden's Eq.] (7). Which such

triplet will most often give rise to a value n = 2? It
is obvious that the triplet (0,1,0) can only give rise to

value n = 2."

Clearly B. Roy Frieden changed the problem - and drastically so.
Frieden's problem now becomes: given an entire urn full of dice, all
different, made very carefully by some imaginary machinist, so that
each one will exhibit a different set of probabilities for the three
faces. For a very crude set, with 11 possible probabilities for each
face our patient die maker would manufacture 66 dice. Sixty-six is
the number of normalizable triplets with a granularity of 0.1.
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I)ne real die for Jaynes, 66 imaginary dice for Frieden! And if
1-rieden wanted 101 possible probabilities for each face, our die maker
would need to produce 5151 precisely carved dice! No wonder Frieden
further changed the problem so that our old fashioned real six sided
die lost half of its faces! Three - sided die indeed!

Now with our new throe - si ded die we are told that the average toss
in a previous experiment was 2.0. Frieden now goes through so,re

calculations to show that out of our urn containing a large number of
dice, we have indeed selected the rare die with probabilities 9, 1 , I!
Of course this ,rrwha 1 die would give an average toss of 2 - it had

no choice. It had zero entropy - it always showed a 2 because it had
ro. fossing this die yielded no new information, it couldn't. It w)s
A 1 wavs pointless to toss it at all. What an enormous const raint I o
lower our entropy from a maximum to zero! Where in t0 originail
statement of the problem by Laynes did it ever say that ainy face Was

impossible?

Frieden insists that his new problem represents a state of true
ignorance and that the one single real Jaynes' die does not. :'e do
not achiev a state of ignorance by makinR thousands )f unneessare

assumptions! What we do is put in an enormous :[mount of prior
information. Is it any wonder at all that Friedon's answer is wildly
different from Jaynes?

Returning to the question asked about how many bits would ho required
for encoding the Frieden die, we see that we would first of all
require log, (5151) or about 7 bits to encode the i",f)ra i "-co li,-
out of 5151-dice has been sel ected".

Let us examine tFrieden's Monte Carlo ca3lcul ation in a litt l , re
detail. If we ris;e a grannularity of 0.1 we will get 11 p,,s Il

"biases" or probabilities for each face for a total of (11) = 1 ii
dice. Of the 1331 dice only 66 can he normalized and of the 66
permissable dice only 6 will yield an expectation vilue of 2.0. theo
six have probabilities of (0,1,0), (.1,.8,.l) (.2,.6,. 2h , (.,.4, .),
(.4,.2,.4), (.5,0,.5). The middle member of this set (.2,.4,.'I) is
the cIosest we can come to a "fair die" with prohabi ities
(1/3,1/3,1/3).

For a granularity of 0.01, there wilt he 101 possible hiases for each
face (0., 0.01 ... 1.00). Thus there will be (101) or 1,016,301
possible triplets, of which only il't can ne noim,,,-ed. From this
set, any single choice will occur with probability 1/5151.

Of these 5151 dice only 51 would yield an expectation value of 2.0.
These 51 would he (0.00,1.00,0.00), (0.01, 0.98, 0.01) .... (0.50,
0.00, 0.50). The closest to "fair" of any of these dice would be
(.33, .34, .33).



Not only does FrLeden change Jaynes' discrete problem into a
continuous one to apply Bayes' Theorem, but he changes back to the
discrete case when he "explains" Jaynes' ME approach. He says:

Statemeat 10:

"Jaynes' ME approach [Frieden's refs] to the die problem is
as follows. Assume that N is large enough [Frieden's
Emphasis] that the law of large numbers [refs] holds, so

that the die biases can be well approximated by values g.
=n /N.".

I

Did Frieden ever read Jaynes' paper? Where does Jaynes ever talK
about N being large enough?

The only effect that N has is to determine the variance of the ME
probabilities, not the probabilities themselves (p , I = l,n). In

fact in the same paper referenced by Frieden, .Jaynes (1982) discusses
an experiment with only N = 50 throws of a die in which we were given
the average number of spots as 4.5 instead of 3.5 as expected from a
fair die. Rowlinson (1970) advocated a binominal distribution instead
of the ME distribution. We now quote Jaynes exactly: "Even if we

come down to N = 50, we find the following. The sample numbers which
agree most closely with (10, 16) while summing to N = 50 are {Nk) =
(3,4,6,8,12,17) and (N', k = (0,1,7,16,18,8} respectively. With such
small numbers, we no longer need asymptotic formulas. For every way
in which Rowlinson's binominal distribution can be realized, there are
exactly W/W' = (7!16!18!)/(3!4!6!12!17!) = 38,220 ways in which the
maximum-entropy distribution {N ) can be realized". In the above
statement, equations (10 and (1) are Jaynes' ME probabilities and
Rowlinson's binominal probabilities respectively.

c. Musicus' Paper
The paper DEL by Frieden elicited a comment by Bruce

Musicus (1986). Musicus accepted the Frieden transmogrification of
Jaynes' discrete problem into the continuous problem we have already
discussed. But Musicus made the excellent point that is nowhere
mentioned in DEL that Frieden is discussing not probabilities but
probability densities. Musicus proceeded to integrate Frieden's
densities to generate marginal densities. With these ajdLginal
densities Musicus makes the point that no single point estimate would
be at all useful or meaningful without a confidence region. Musicus

then finds several "unreasonable" point estimates which he calls:

Statement 1:

MAP - A: xl,x 2,x3 = (0,1,0)

(0,0.5,0), for N even
MAP - B: ×lX2,x3=

(0,0,0) (sic) for N odd
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We certainly agree with Musicus that these estimates arf unreasonable.

Musicus adds:

Statement 2:

"The fact that these point estimators all give radically

different estimates is hardly surprising, given that the
probability density in Frieden's problem is not unimodal,
and is not strongly clustered around the center."

Musicus then proceeds to discuss Maximum Entropy as follows:

Statement 3:

"Note that Maximum Entropy is thus justified for a problem
involving known a priori biases xIx 2 ,x3 and incomplete
observation data (we only know the mean n of the throws
of the dice, nl,n 2 ,n 3 ) with asymptotically infinite
numbers of throws N. Frieden 's paper reverses the
problem, asking for estimates of x.,x 2 ,x3 given the

observation mean R; it is not surprising that he gets a
very different answer."

Fact: Using ME we are not given "a priori biases". It is the duty of
the ME caluclation to convert information - the given mean E - into a
probability distributi-n. No asymptotically infinite numbers of
throws are necessary. Frieden's paper doesn't reverse the problem at
all! Frieden changes an essentialT discrete problem into an
essentially continuous problem. We agree with Musicus' last statement
"it is not surprising that Frieden gets a different answer".

d. Makhoul's Paper.
The Frieden paper we have been discussing was first

pointed out to me at the Third ASSP Workshop on Spectrum Estimation

and Modelling in a paper entitled "Maximum Confusion Spectral
Analysis" by John Makhoul (1986). The content of this paper, which is
available in the proceedings, was not quite as whimsical as its title
suggested; at least two scientists in -he audience seem to have been
convinced by its attacks on the ME method, one of which was a simply a
recounting of Frieden's paper. It was this presenLaticn that
stimulated ma to study the subject of Jaynes' die in depth and
ultimately to write this present paper. I am really indebted to John
Makhoul for the stimulation. The Makhoul paper was limited in length
tc four pages of which only the first two are devoted to an
"explanation" of ME and to the dice problem. The concentration of

error per page in this paper is truly astounding!
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Statement 1:

"We assume that a random experiment has r possible event,

at each trial and that each event i, I &i r, has an a
priori known probability x.

1

Fact: The prior probabilities are not known but unknown. The whole
point of ME is to determine a set of prior probabilities consistent
with ali known information and maximally non-committal with respect to
everything else!

Statement 2:

"Perhaps the greatest contributing factor to the confusion

surrounding ME is the claim or allusion by some that ME
provides a posterior estimate of the a priori
probabilities x."

Fact: ME is used to determine the prior probabilities. No competent
ME practitioner, and certainly not Ed .Jaynes, ever claims that ME
produces posterior probabilities. Ns in the die experiment a sequence
of ME calculations can produce sets of probabilities which agree
better and better with observed frequencies, but each set of
probabilities is essentially a prior probability assignment. If
another experiment were then performed, Bayes equation would then use
the ME probabilities and the experimental information to produce a set
of posterior probabilities which might be better than the ME
probabilities if the new information were neither redundant nor
contradictory but cogent.

Statement 3:

"Curthermore, it is claimed that this estimate is the most

probable or most likely solution, ie, it is a maximum a

posteriori (MAP) estimate, Also, it is claimed to be the
solution that is 'maximally noncommittal' and makes the
fewest assumptions in regard to the unknown data."

Fact: The first statement is untrue. The second is precisely
correct, and the claim is also precisely correct.

Statement 4:

"Far from being maximally noncommittal, the ME solution is
based on a very specific and hightly committal ;issumption
of an equiprobable prior."

Fact: No equiprobable prior is ever claimed by competent ME
practitioners. We have demonstrated in section lb that under the
assumption of dicreteness (we have an enumeration of the



MAXIMUM ENTROPY CALCULATION ON A DISCRETE PROBABILITYSPACE 2;1

possibilities) and normalization and nothing more, equal probabilities
for all possibilities is a consequence of ME, not an assumption. As
soon as more information, perhaps in the form of expectation values,
is provided, the ME probabilities become unequal in order to fit the
observed constraints.

Statement 5:

"The ME principle is then invoked to obtain the most
likely vector of frequencies f that obey the constraint
[Makhoul's Eq.] (10). Using our intepretation of the ME
principle, we in effect assume that the die is a priori
fair (unbiased) and then we compute the most ., ely
frequencies for which (10) is true. If u = 4.5, which is
very different from the expected value of 3.5 for a fair
die, then the ME solution is given by [Makhoul's Eq.]
(1) ."

Fact: The primary goal of ME is to obtain a set of probabilities not
frequencies. Ed Jaynes and other competent ME practitioners are

always careful to distinguish between probabilities which can be
assigned or calculated by ME or other valid procedures, and
frequencies which can be measured in a laboratory. Under certain

conditions which are elaborated in Jaynes (1968, 1978), there is a
very strong correspondence between ME probabilities and measured
frequencies but they are still quite distinct ideas conceptually.
Once again the die is never assumed to be fair! Where does this
gratuitous nonsense come from?

Statement 6:

"While it is true that if N is large, having u = 4.5 is a

good indicator that the die is most likely loaded because

the probability of having u = 4.5 for a fair die is
extremely small, the ME principle cannot be used
productively to estimate the biases of the die. The ME
die is simply not loaded. To name the problem the
'loaded die' problem has been a major source of confusion
because it implies that the die is loaded and that the
estimated frequencies are somehow related to the biases
of the die. In ME, the die is known to be fair, but in
an actual experiment the value of u comes out to be 4.5
for example instead of 3.5, which is a unlikely but
possible event. We then use ME to compute the
frequencies that most likely occurred from this most
unlikely event."

Fact: N large (small, medium, known or unknown) is completely
irrelevent for the solution of the ME problem! If N trials had been
used to estimate frequencies then N would have a very large effect on
the variance of the ME probabilities but none whatever on the
probabilities themselves.
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Fact: The straight jacket which says that ME die is not loaded is a
complete fiction! It exists only in the mind of the author and has
nothing to do with the theory and practice of ME methods. The reader
is asked to refer again to the exhaustive analysis of the Wolf dice
data. If this doesn't convince the reader that ME works beautifully
to discover physical biases which were present in dice thrown
repeatedly over 100 years ago, then nothing will.

The essential difficulty in Makhoul's paper in addition to his
complete and total misunderstanding of ME, is his transformation, in
agreement with Frieden and Musicus of our basically discrete dice
problem into a strange unrecognizable continuous problem with objects
which no one should ever call "dice".
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